
ANSI C Cryptographic API Profile
for AES Candidate Algorithm Submissions

Original: January 16, 1998
Revision 1: February 6, 1998
Revision 2: March 19,1998
Revision 3: April 6,1998

1. Overview

This document specifies the ANSI C interface profile for implementations of AES
candidate algorithms. C implementations shall support the syntax and parameterization of
the interface profile messages as described in this API.

 (4/6/98) Some changes were made to the ANSI C language profile to simplify and clarify
its usage. A few are minor bug fixes and others are changes to the function calls and
parameters in the key generator interface. Also, the ANSI C profile was extracted from
the existing document and is now presented in this separate document.

2. Key Generation Interface

Each AES submitter will be required to implement this interface because NIST anticipates
that some candidate algorithms will have unique requirements for and methods of key
generation. Implementations shall support generation of 128, 192, and 256-bit keys, and,
where applicable, are responsible for controlling the key generation process to avoid the
possibility of creating the equivalent of weak keys for a given algorithm.

The ANSI C key generation programming interface uses two structures and a set of
functions to generate and manipulate key. The first structure, keyInstance, is an algorithm
independent structure that shall remain unchanged for all submissions. The second
structure, keyParams, is algorithm dependent and is used to contain any algorithm-specific
key material or information that is necessary. All implementations must be sure to
document any algorithm-specific parameters and their use.

The key generator functions get used in this way. First, keyInit() is called with the
appropriate parameters which get loaded into the keyInstance structure and the
keyParams structure. If the candidate algorithm has any key independent setup to
perform, it should be performed in this routine. Second, keySetup() is called to perform
any key specific setup that is necessary. The generateRandomKey() function is provided
to allow implementations to generate arbitrary keys. This function could also be used as a
pseudo-random number generator. You are NOT required to include a pseudo-random
number generating (PRNG) function in your submission; however, the use of the
algorithm as a PRNG can be a bonus as far as flexibility is concerned (see Section 2.B.6).
For the purpose of the KAT and MCT tests, random keys will not be generated. If your
algorithm can be used to generate pseudo-random values for keys, you may wish to

2

include this feature in your submission. Since some of our testing at NIST will involve
looking at the pseudo-random number generation capabilities of algorithms, this feature
will be useful to us. Once again, though, it is not required.

Ø typedef struct {
BYTE mode;
int keyLen;
BYTE *keyMaterial; /* BYTE is defined as an unsigned char */
BYTE *random;
keyParams *params;
} keyInstance;

(4/6/98 – mode type was changed from int to BYTE to match the cipherInstance structure.
Also, additional modes were added below. randomSeed was renamed to random and
moved from the keyparams structure to the keyInstance structure)

Ø typedef struct {
BYTE *KS; /* SAMPLE: key schedule, a la DES */
} keyParams;

v keyInit

int keyInit(keyInstance *key, int mode, int keyLen, BYTE *keyMaterial,
BYTE *random, BYTE *params)

Initializes a keyInstance with the following information:
• keyLen: The key length (128, 192, 256, and possibly more) of the

key,
• mode: one of the following: ENCRYPT_ECB=1,

DECRYPT_ECB=2, ENCRYPT_CBC=3, DECRYPT_CBC=4,
ENCRYPT_CFB1=5, DECRYPT_CFB1=6,

• The raw key data, keyMaterial, if present,
• An optional source of randomness (a seed), and
• Other params, if necessary.

Parameters:
key: a structure that holds the keyInstance information
mode: an integer value that indicates if the key is being set
for encryption or decryption and in what mode (e.g.,
mode=Encrypt in cipher block chaining mode=3)
keyLen: an integer value that indicates the length of the key
in bits.
keyMaterial: the raw key information (blocksize/4 ASCII
characters representing the hex values for the key). This
value may not be present. For example,

3

“0123456789abcdef0123456789abcdef" is the string for a
key with the binary value:
000100100011010001010110011110001001101010111100
11011110...
random: an optional seed value for the generation of a
random key. (Same sort of format as keyMaterial.)
params: an optional string for passing algorithm specific
information. The format of the “params” string IS
IMPLEMENTATION SPECIFIC, some algorithms will
require different parameters. SPECIFY THE USE OF
THIS STRING FOR YOUR IMPLEMENTATION.

Returns:
TRUE - on success
BAD_KEY_PARAMS - params structure not valid for this
cipher
BAD_KEY_MAT - keyMaterial is invalid (e.g., wrong
length)

v keySetup

int keySetup(keyInstance *key)

keyInstance should already have the keyMaterial loaded. Use this
routine to perform any algorithm specific setup that is necessary,
e.g., initialization of key schedule in DES.

Returns:
TRUE - on success
BAD_KEY_SPEC - didn't include keyMaterial to generate
a key

v generateRandomKey

(4/6/98 – As stated above, this routine is not strictly needed for the KAT and
MCT tests, but is included to allow for greater flexibility and to allow
implementors to provide a means for generating pseudo-random data.)

int generateRandomKey(keyInstance *key)

Generates a random key. The value generated by this function is
the raw key, e.g., “0123456789abcdef0123456789abcdef”. The
value for this key is stored in the key->keyMaterial field of the
structure. This value shall be stored as the ASCII string
representation of the key.

4

This will most likely use the contents of key->random as a seed to
an algorithm for generating a pseudo-random secret key. Any
algorithm specific setup will be performed in the keySetup()
routine.

Returns:
TRUE - on success
FALSE - on failure

(4/6/98 – Deleted function called keyGetKey. Programs can get this info from
key->keyMaterial directly.)

3. Cipher Object Interface

The ANSI C cipher programming interface uses two structures and a set of functions to
manipulate cipher data. The first structure, cipherInstance, is an algorithm independent
structure that shall remain unchanged for all submissions. The second structure,
cipherParams, is algorithm dependent and is used to contain any algorithm-specific cipher
data or information that is necessary. All implementations must be sure to document
any algorithm-specific parameters and their use.

The cipher routines get used in this way. First, cipherInit() is called with the appropriate
parameters in params to be loaded into the cipherInstance structure. cipherInit() will
perform any additional algorithm setup that is required, e.g., incorporating the use of an
Initialization Vector. Then blocks of data are supplied to either cipherUpdate() or
cipherFinal() for ciphering. cipherUpdate() can be called multiple times and the
cipherInstance structure is used to maintain state information between calls.
cipherFinal() would then be called to cipher the final block or peace of a block. If the
entire block is available for ciphering at one time, as is the case with the KAT and MCT
tests, cipherUpdate() can be avoided and a single call to cipherFinal() can be used.

Ø typedef struct {
BYTE mode; /* ENCRYPT_ECB, DECRYPT_ECB, etc. */
int numBytes; /* Number of bytes processed by cipher */
int bufLen; /* Number of bytes in the buffer */
BYTE buffer[BLOCKSIZE]; /* Unprocessed data */
cipherParams *params; /* Algorithm specific information */
} cipherInstance;

Ø typedef struct {
BYTE *IV; /* Sample: Possible Initialization Vector for cipher */
int blocksize; /* Sample: If alg. handles additional block sizes */
int padMode; /* Sample: Padding mode of partial blocks */

5

} cipherParams;

v cipherInit

int cipherInit(cipherInstance *cipher, keyInstance *key, BYTE mode,
cipherParams *params)

Initializes the cipher with the mode and sets the buffer information
to empty. If any algorithm specific setup is necessary take care of
that as well. Params may contain initialization information like an
Initialization Vector. If the algorithm can use other block sizes than
128-bits, this value can be loaded in params as well. (4/6/98 –
removed the random parameter. If this is necessary or useful,
include it in the cipherParams structure.)

Parameters:
cipher – the cipherInstance being loaded
key – the ciphering key
mode - the operation mode of this cipher (this is one of
ENCRYPT_ECB, DECRYPT_ECB, etc.)
params - the algorithm parameters (implementation defined)

Returns:
TRUE - on success
BAD_CIPHER_KEY - the key passed does not agree with
this cipher (e.g., bad mode)
BAD_CIPHER_PARAMS - the params struct is invalid for
this cipher

v cipherUpdate

int cipherUpdate(cipherInstance *cipher, keyInstance *key, BYTE *input,
int inputOffset, int inputLen, BYTE *outBuffer)

Uses the cipherInstance object and the keyInstance object to
encrypt or decrypt the data in the input buffer. This data need not
be an integral block unit (e.g., 128 bits). The output (either the
encrypted or decrypted data) is returned in outBuffer. The routine
returns the number of bytes ciphered.

Parameters:
cipher – the cipherInstance to be used
key – the ciphering key
input - the input buffer

6

inputOffset - the offset in input where the input starts
inputLen - the input length
outBuffer – contains the ciphered data

Returns:
The number of bytes ciphered, or
BAD_CIPHER_STATE - cipher in bad state (e.g., not
initialized)

v cipherDoFinal

int cipherDoFinal(cipherInstance *cipher, keyInstance *key, BYTE *input,
int inputOffset, int inputLen, BYTE *outBuffer)

Uses the cipherInstance object and the keyInstance object to
encrypt or decrypt the data in the input buffer. This data need not
be an integral block unit (128 bits). Since this is the final call for an
encryption or decryption operation, any non-integral block unit is
padded to a full block and the ciphered. The output (either the
encrypted or decrypted data) is return in outBuffer. The routine
returns the number of bytes ciphered.

Parameters:
cipher – the cipherInstance to be used
key – the ciphering key
input - the input buffer
inputOffset - the offset in input where the input starts
inputLen - the input length
outBuffer – contains the ciphered data

Returns:
The number of bytes ciphered, or
BAD_CIPHER_STATE - cipher in bad state (e.g., not
initialized)
BAD_CIPHER_BLOCK - cipher is block, but didn't receive
full block and no padding requested

